
Abstract. Analytical Hartree–Fock gradients with
respect to the cell parameter have been implemented in
the electronic structure code CRYSTAL, for the case of
three-dimensional periodicity. The code is based on
Gaussian-type orbitals, and the summation of the Cou-
lomb energy is performed with the Ewald method. It is
shown that a high accuracy of the cell gradient can be
achieved.

Keywords: Hartree-Fock, gradient, cell parameter,
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1 Introduction

Electronic structure codes are nowadays widely used by
theoreticians and also by a growing number of exper-
imentalists. One of the targets is the calculation of the
total energy and the structural optimization of large
systems. It is well known that this is greatly facilitated by
the availability of analytical gradients, and thus the
coding of gradients has become an important part of
code development.

In the molecular case, the geometrical parameters
that must be optimized are the nuclear coordinates. This
field was pioneered by Pulay [1]; however, it should be
mentioned that the theory had already been derived
earlier independently [2]. Meanwhile, numerous review
articles about analytical derivatives have appeared [3, 4,
5, 6, 7, 8, 9].

In the case of periodic systems, the cell dimensions are
an additional set of parameters. Nowadays, nearly all
solid-state codes compute the total energy with density
functional methods. However, because of the success of
hybrid functionals, which use an admixture of Fock ex-
change, there is growing interest in codes which compute
the Fock exchange. CRYSTAL [10] was originally a

code for pure Hartree–Fock calculations. In the past
decade, density functional calculations for all types of
functionals have become possible as well with this code.

The code is based on Gaussian-type orbitals, and
most of the contributions to the total energy rely on the
Hartree–Fock formulation. Therefore, the Hartree–
Fock gradients with respect to the cell parameter were
the first step to make gradients with respect to the cell
parameter available. In this article, we report on the
implementation of gradients at the Hartree–Fock level,
with respect to the cell parameter, for systems periodic in
three dimensions.

The first gradients with respect to the cell parameter,
at the Hartree–Fock level, were for systems periodic in
one dimension [11]. Meanwhile, various groups have
implemented these gradients in one dimension [12, 13] or
in two dimensions [14]. For the general case, a strategy
to compute cell parameter derivatives (and thus the
stress tensor) was suggested with point charges [15] and
an algorithm for structural optimization, based on
redundant internal coordinates was proposed [16].

All these codes use a real space approach, where all
the summations are performed in direct space. As an
acceleration tool, the fast multipole method is applied in
various cases. The cell parameter gradient is then ob-
tained essentially by multiplying the contributions to the
nuclear gradients with the appropriate factors.

In contrast, the CRYSTAL code uses, in the case of
three-dimensional periodicity, the Ewald method, which
is a combination of direct and reciprocal lattice sum-
mations [17]. This means, that besides some contribu-
tions which have to be multiplied with trivial factors,
there will also be additional derivatives, because various
parameters in the Ewald scheme, and the reciprocal lat-
tice vectors, depend on the cell parameters. The Hartree–
Fock gradients with respect to nuclear coordinates were
implemented earlier [18,19], and after the implementa-
tion of a tool for structural optimization, it was dem-
onstrated that an efficient geometry optimization of large
systems with any periodicity can be performed [20].

In this article, we describe the formalism used in the
CRYSTAL code for the cell parameter gradients, and
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present results from tests on various systems. The article
is structured as follows. First, the variables are defined.
Then the integrals and their derivatives with respect to
the cell parameters are discussed, and in the following
section the derivative of the total energy is given.
Finally, some examples are used as an illustration of the
formalism.

2 Variables

The primitive cell is given by three vectors,~a1,~a2 and~a3,
and the derivatives with respect to the cell parameters aij
have been coded. aij are defined in such a way that
a11 ¼ a1x is the x-component of ~a1, a12 ¼ a1y the y-
component of ~a1, and a13 ¼ a1z the z-component of ~a1,
i.e.,

~a1

~a2

~a3

0
BBB@

1
CCCA ¼

a1x a1y a1z

a2x a2y a2z

a3x a3y a3z

0
BBB@

1
CCCA ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BBB@

1
CCCA : ð1Þ

A point ~g of the direct lattice is defined as
~g ¼ n1~a1 þ n2~a2 þ n3~a3, with n1; n2 and n3 being integer
numbers. We assume we have N atoms in the unit cell.
The position of an atom c in a cell at the origin (i.e.,

~g ¼~0) is given as ~Ac ¼ fc;1~a1 þ fc;2~a2 þ fc;3~a3, and then
in cell ~g the position will be

~Ac þ~g ¼ ðfc;1 þ n~g;1Þ~a1 þ ðfc;2 þ n~g;2Þ~a2 þ ðfc;3 þ n~g;3Þ~a3:

We have used an additional index, i.e., n~g;1 means factor
n1 of the lattice vector ~g. The Cartesian t component
(with t being x, y or z) of the vector ~Ac þ~g, indicated as
Ac;t þ gt, is thus

Ac;t þ gt ¼
X3
m¼1
ðfc;m þ n~g;mÞamt :

As all the integrals depend on the position of the nuclei,
the derivatives of the nuclear coordinates with respect to
the cell parameters are required:

oAc;t þ gt

oaij
¼
X3
m¼1
ðfc;m þ n~g;mÞdimdjt ¼ ðfc;i þ n~g;iÞdjt ; ð2Þ

with the Kronecker symbol djt.
In the following, we use the notation ~Ac to indicate

the position of atom c. However, we also need to define
basis functions /l centered at a certain nucleus, where l
runs over all the basis functions. For example, basis
functions l ¼ 1; :::; 5 might be centred at atom 1, basis
functions l ¼ 6; :::; 15 at atom 2 and so on. It is thus
trivial to assign a certain atom number c to the basis
function l: c ¼ cðlÞ. We could thus use the notation
~AcðlÞ, but will instead use the simplified notation ~Al. To
avoid confusion, Greek indices are used in this case, i.e.,
~Al ¼ ~AcðlÞ ¼ ~Ac.

The basis functions used are real spherical Gaussian–
type functions, and we will use the notation
/lð~r �~Al �~gÞ.

The crystalline orbitals are linear combinations of
Bloch functions

Wnð~r; ~KÞ ¼
X

l

alnð~KÞwlð~r; ~KÞ ð3Þ

which are expanded in terms of real spherical Gaussian-
type functions

wlð~r; ~KÞ ¼
X
~g

/lð~r �~Al �~gÞei
~K~g : ð4Þ

The spin-free density matrix in reciprocal space is
defined as

Plmð~KÞ ¼ 2
X

n

alnð~KÞa�mnð~KÞH �F � �nð~KÞ
� �

; ð5Þ

with the Fermi energy �F and the Heaviside function H.
In the case of unrestricted Hartree–Fock [21], we use the
notation

W"nð~r; ~KÞ ¼
X

l

a"lnð~KÞwlð~r; ~KÞ ð6Þ

W#nð~r; ~KÞ ¼
X

l

a#lnð~KÞwlð~r; ~KÞ ð7Þ

for the crystalline orbitals with up and down spin,
respectively. We define the density matrices for spin up
and spin down as follows:

P "lmð~KÞ ¼
X

n

a"lnð~KÞa�"mnð~KÞH �F � �"nð~KÞ
� �

ð8Þ

and

P #lmð~KÞ ¼
X

n

a#lnð~KÞa�#mnð~KÞH �F � �#nð~KÞ
� �

: ð9Þ

In the following, Plm refers to the sum P "lm þ P #lm in the
UHF case. The density matrices in real space,
Pl~0m~g; P

"
l~0m~g

; and P #
l~0m~g

, are obtained by Fourier trans-

formation of the corresponding reciprocal space quan-
tity.

3 Integrals and their derivatives

3.1 Nuclear–nuclear repulsion energy

The Ewald energy of the nuclear repulsion ENN is
obtained as

ENN ¼ 1

2

X
a;b

ZaZbUð~Ab �~AaÞ ¼
1

2

X
a;b

ZaZb �
p
cV

�

þ
X0

~h

1� erfð ffiffifficp j~Ab �~Aa �~hjÞ
j~Ab �~Aa �~hj

þ 4p
V

X0

~K

1

~K2
exp

� �
~K2

4c
þ i~Kð~Ab �~AaÞ

 !#
; ð10Þ

with the nuclear charge Za, and Uð~r �~AaÞ being the
Ewald potential function U, as defined in Ref. [22]:
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Uð~r�~AaÞ¼�
p
cV
þ
X0
~h

1� erfð ffiffifficp j~r�~Aa�~hjÞ
j~r�~Aa�~hj

þ4p
V

X0

~K

1

~K2
exp �

~K2

4c
þ i~Kð~r�~AaÞ

 !

¼� p
cV
þ
X0
~h

U~hð~r�~AaÞþ
X0
~K

U~Kð~r�~AaÞ : ð11Þ

~h are the direct lattice vectors, ~K the reciprocal lattice
vectors, V is the volume and c is a screening parameter
which was optimized [22] to be c ¼ ð2:8=V 1=3Þ2, in the
three-dimensional case. The prime in the direct lattice
summation indicates that the summation includes all
values of the direct lattice vector~h, with the exception of
the case when j~r �~Aa �~hj vanishes. In this case, the term

1
j~r�~Aa�~hj

is omitted from the sum. In the reciprocal lattice

series, the prime indicates that all terms with ~K 6¼~0 are
included.

The error function is defined as

erfðpÞ ¼ 2ffiffiffi
p
p
Z p

0

expð�u2Þdu : ð12Þ

We consider the Ewald potential as being dependent on
the variables ~Ac , ~h, V , c and ~K. The derivative with
respect to the cell parameters thus requires derivatives
with respect to the centers ~Ac and the lattice vectors ~h
which are similar to the nuclear gradients and have to be
multiplied with a trivial factor. In addition, the Ewald
potential depends on the cell parameters aij through the
volume V , the screening parameter c, and the reciprocal
lattice vectors ~K. We obtain

oENN

oaij
¼
X

c;t

oENN

oAc;t

oAc;t

oaij
þ
X0
~h

X
t

oENN

oht

oht

oaij

þ oENN

oV
oV
oaij
þ oENN

oc
oc
oaij
þ
X0
~K

X
t

oENN

oKt

oKt

oaij

¼
X

c

oENN

oAc;j
fc;i þ

X0
~h

oENN

ohj
n~h;i

þ oENN

oV
oV
oaij
þ oENN

oc
oc
oaij
þ
X0
~K

X
t

oENN

oKt

oKt

oaij
:ð13Þ

Kt, with t ¼ 1; 2; 3, are the components K1 ¼ Kx;
K2 ¼ Ky and K3 ¼ Kz of ~K. The derivatives of the
parameters V , c and ~K with respect to aij are
straightforward:

3.1.1 Derivative of the volume

The volume is obtained as the cross product of the cell
parameters: V ¼~a1ð~a2 �~a3Þ: Thus, the derivatives oV

oaij
,

are, for example, obtained as

oV
oa1x
¼ a2ya3z � a2za3y ; ð14Þ

oV
oa1y

¼ a2za3x � a2xa3z; ð15Þ

oV
oa2x
¼ a3ya1z � a3za1y : ð16Þ

The remaining components can easily be obtained by
cyclic permutation: 1! 2; 2! 3; 3! 1, or x! y;
y ! z; z! x.

3.1.2 Derivative of the screening parameter

The derivative is straightforward:

oc
oaij
¼ oc

oV
oV
oaij
¼ � 2c

3V
oV
oaij

: ð17Þ

3.1.3 Derivative of the reciprocal lattice vectors

The reciprocal lattice vectors ~K can be expressed as

~K ¼ n1
~b1 þ n2

~b2 þ n3~b3 ; ð18Þ
with the primitive vectors ~bi of the reciprocal lattice
defined as

~b1 ¼
2p
V
~a2 �~a3 ;~b2 ¼

2p
V
~a3 �~a1 ;~b3 ¼

2p
V
~a1 �~a2 : ð19Þ

We thus need to evaluate the derivatives of the vectors~bi
with respect to the cell parameters. A few examples are
given as follows:

o~b1

oa1x
¼ o

oa1x

2p
V

a2ya3z � a3ya2z

a2za3x � a3za2x

a2xa3y � a3xa2y

0
B@

1
CA

2
64

3
75 ð20Þ

and thus

o~b1
oa1x
¼ � oV

oa1x

~b1
V

ð21Þ

or

o~b1
oa2x
¼ � oV

oa2x

~b1
V
þ 2p

V

0
�a3z

a3y

0
@

1
A ð22Þ

or

o~b2
oa1x
¼ � oV

oa1x

~b2
V
þ 2p

V

0
a3z

�a3y

0
@

1
A : ð23Þ

Again, all the other derivatives can be obtained by cyclic
permutation. The individual derivatives are thus

oENN

oV
¼ 1

2

X
a;b

ZaZb
p

cV 2
� 4p

V 2

X0
~K

1

~K2
exp

"

� �
~K2

4c
þ i~Kð~Ab �~AaÞ

 !#
; ð24Þ

oENN

oc
¼ 1

2

X
a;b

ZaZb

"
p

c2V
�
X0
~h

1ffiffiffiffiffi
pc
p expð�cð~Ab �~Aa �~hÞ2Þ:

þ p
c2V

X0
~K

exp �
~K2

4c
þ i~Kð~Ab �~AaÞ

 !#
ð25Þ
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and

oENN

oKt
¼ 1

2

X
a;b

ZaZb
4p
V
�2Kt

ð~K2Þ2

"

þ 1

~K2
�Kt

2c
þ iðAb;t � Aa;tÞ

� ��

� exp �
~K2

4c
þ i~Kð~Ab �~AaÞ

" #
: ð26Þ

The partial derivative with respect to the nuclear
positions is just the nuclear gradient which is already
available in the code:

oENN

oAc;t
¼ 1

2

X
a

ZaZc 2
X0
~h

ðAc;t � Aa;t � htÞ

0
@

�
 
� 1� erfð ffiffifficp j~Ac �~Aa �~hjÞ

j~Ac �~Aa �~hj3

� 2
ffiffiffi
c
p
ffiffiffi
p
p expð�cð~Ac �~Aa �~hÞ2Þ

j~Ac �~Aa �~hj2

!

þ 4p
V

X0

~K

iKt

~K2
exp �

~K2

4c

 !

�
�
exp i~Kð~Ac �~AaÞ
h i

� exp �i~Kð~Ac �~AaÞ
h i	�

: ð27Þ

The derivatives with respect to the direct lattice vectors~h
are obtained as

oENN

oht
¼ 1

2

X
a;b

ZaZbðAb;t � Aa;t � htÞ

� 1� erfð ffiffifficp j~Ab �~Aa �~hjÞ
j~Ab �~Aa �~hj3

 

þ 2
ffiffiffi
c
p
ffiffiffi
p
p expð�cð~Ab �~Aa �~hÞ2Þ

j~Ab �~Aa �~hj2

!
: ð28Þ

3.2 Overlap integral

The fundamental integral is the overlap integral. It is
defined as

Sl~0m~g ¼
Z

/lð~r �~AlÞ/mð~r �~Am �~gÞd3r: ð29Þ

Its derivative with respect to the cell parameters aij is
thus

oSl~0m~g

oaij
¼
X3
t¼1

oSl~0m~g

oAl;t

oAl;t

oaij
þ

oSl~0m~g

oðAm;t þ gtÞ
oðAm;t þ gtÞ

oaij

� �
;ð30Þ

where t represents the summation over x; y; z. Exploiting
translational invariance, we obtain

oSl~0m~g

oaij
¼
X3
t¼1

oSl~0m~g

oAl;t

oAl;t

oaij
� oðAm;t þ gtÞ

oaij

� �

¼
X3
t¼1

oSl~0m~g

oAl;t
fl;i � fm;i � n~g;i

 �

djt

¼
oSl~0m~g

oAl;j
fl;i � fm;i � n~g;i

 �

: ð31Þ

The derivative
oSl~0m~g

oAl;j
is identical to the one which is

required for the calculation of the gradient with respect
to nuclear positions and thus it only needs to be
multiplied with a trivial factor to obtain the derivative
with respect to the cell parameters.

3.3 Kinetic energy integrals

The evaluation of the kinetic energy integrals leads to a
combination of overlap integrals:

Tl~0m~g ¼
Z

/lð~r �~AlÞ �
1

2
D~r

� �
/mð~r �~Am �~gÞd3r : ð32Þ

When computing the derivatives with respect to the cell
parameters, we thus obtain in complete analogy to
Eq. (31)

oTl~0m~g

oaij
¼

oTl~0m~g

oAl;j
fl;i � fm;i � n~g;i

 �

: ð33Þ

3.4 Nuclear attraction integrals

The nuclear attraction integrals are defined as

Nl~0m~g ¼ �
X

a

Za

Z
/lð~r �~AlÞUð~r �~AaÞ/m

� ð~r �~Am �~gÞd3r : ð34Þ
This has been explicitly evaluated in reference Ref. [22].
The derivative with respect to the cell parameters
consists now of the following contributions: there are
derivatives with respect to three centers ~Al, ~Am þ~g and
~Aa. Similar to the nuclear–nuclear repulsion, derivatives
with respect to V , c and ~K are required. These derivatives
are similar to the ones appearing when evaluating the
nuclear–nuclear gradient.

The derivatives with respect to the direct lattice vec-
tors can again be obtained by using the nuclear gradi-
ents, and the rule

X3
t¼1

oNl~0m~g

oAl;t

oAl;t

aij
¼

oNl~0m~g

oAl;j
fl;i : ð35Þ

The part of the derivative coming from the center
ð~Am þ~gÞ is obtained in the same way, and the derivative
with respect to ~Aa in Uð~r �~AaÞ is obtained from
translational invariance. All these nuclear gradients
simply need to be multiplied with the proper factors,
for ~Al, ~Am þ~g and ~Aa.
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We can thus view the nuclear attraction integrals
Nl~0m~g as a function of the variables ~Al, ~Am þ~g, ~Aa,~h, V , c
and ~K. As a whole, we obtain therefore for the derivative

oNl~0m~g

oaij
¼

oNl~0m~g

oAl;j
fl;i þ

oNl~0m~g

oAm;j
ðfm;i þ n~g;iÞ

�
oNl~0m~g

oAl;j
þ

oNl~0m~g

oAm;j

� �
fa;i � Za

X0

~h

Z

� /lð~r�~AlÞ
oU~hð~r�~AaÞ

ohj
n~h;i/mð~r�~Am �~gÞd3r

þ
oNl~0m~g

oV
oV
oaij
þ

oNl~0m~g

oc
oc
oaij

þ
X0
~k

X
t

oNl~0m~g

oKt

oKt

oaij
: ð36Þ

Translational invariance can be exploited for the
following contribution:

Z
/lð~r �~AlÞ

oU~hð~r �~AaÞ
ohj

n~h;i/mð~r �~Am �~gÞd3r

¼ �
Z

o/lð~r �~AlÞ
oAl;j

U~hð~r �~AaÞ/mð~r �~Am �~gÞn~h;id
3r

�
Z

/lð~r �~AlÞU~hð~r �~AaÞ

� o/mð~r �~Am �~gÞ
oAm;j

n~h;id
3r : ð37Þ

3.5 Multipolar integrals

In the expression of the total energy, a term with a factor

gm
l ðqc;~AcÞ ¼

Z
qcð~rÞX m

l ð~r �~AcÞd3r ð38Þ

appears, with X m
l being regular solid harmonics [22]. The

charge qcð~rÞ is defined as

qcð~rÞ ¼ �
X

~g;l2c;m

Pm~gl~0/lð~r �~AlÞ/mð~r �~Am �~gÞ : ð39Þ

The expression which needs to be differentiated has the
structure

Im
ll~0m~g
¼
Z

/lð~r �~AlÞ/mð~r �~Am �~gÞX m
l ð~r �~AlÞd3r :

ð40Þ
We can thus also write

gm
l ðqc;~AcÞ ¼ �

X
~g;l2c;m

Pm~gl~0I
m
ll~0m~g

: ð41Þ

When computing the derivative with respect to the cell
parameter, this derivative is required for the expression
Im
ll~0m~g

. The only dependence on the cell parameter is via

the nuclear coordinates ~Al and ~Am þ~g. Thus, the
derivative with respect to the cell parameters aij is
obtained as

oIm
ll~0m~g

oaij
¼

oIm
ll~0m~g

oAl;j
fl;i � fm;i � n~g;i

 �

: ð42Þ

3.6 Field integrals

The field integrals are defined as

Mm
ll~0m~gc

¼ Zm
l ð~̂AcÞ

Z
/lð~r �~AlÞ/mð~r �~Am �~gÞ

�
�
Uð~r �~AcÞ �

Xpen

~h

1

j~r �~Ac �~hj

�
d3r ; ð43Þ

with Zm
l ð~̂AcÞ being the spherical gradient operator [22].

The penetration depth pen is a certain threshold for
which the integrals are evaluated exactly [22, 23].

Similar to the nuclear attraction integrals, this inte-
gral also requires derivatives with respect to ~Al, ~Am þ~g
and ~Ac,~h and the derivatives with respect to V , c and ~K
because of the Ewald potential. The derivatives with
respect to ~Al and ~Am þ~g are already available, and the
derivatives with respect to ~Ac are obtained from trans-
lational invariance. We obtain

oMm
ll~0m~gc

oaij
¼

oMm
ll~0m~gc

oAl;j
fl;iþ

oMm
ll~0m~gc

oAm;j
ðfm;iþn~g;iÞ

�
oMm

ll~0m~gc

oAl;j
þ

oMm
ll~0m~gc

oAm;j

 !
fc;iþZm

l ð~̂AcÞ

�
Z

/lð~r�~AlÞ/mð~r�~Am�~gÞ
�X0

~h

oU~hð~r�~AcÞ
ohj

n~h;i

�
Xpen

~h

o

ohj

1

j~r�~Ac�~hj
n~h;i

�
d3r

þ
oMm

ll~0m~gc

oV
oV
aij
þ

oMm
ll~0m~gc

oc
oc
oaij

þ
X0
~k

X
t

oMm
ll~0m~gc

oKt

oKt

oaij
: ð44Þ

Similar to the nuclear attraction integrals, we can exploit
translational invariance:

Z
/lð~r �~AlÞ/mð~r �~Am �~gÞ

oU~hð~r �~AcÞ
ohj

n~h;id
3r

¼ �
Z

o/lð~r �~AlÞ
oAl;j

/mð~r �~Am �~gÞU~hð~r �~AcÞn~h;id
3r

�
Z

/lð~r �~AlÞ
o/mð~r �~Am �~gÞ

oAm;j
U~hð~r �~AcÞn~h;id

3r

ð45Þ
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and
Z

/lð~r �~AlÞ/mð~r �~Am �~gÞ
o

ohj

1

j~r �~Ac �~hj
n~h;id

3r

¼ �
Z

o/lð~r �~AlÞ
oAl;j

/mð~r �~Am �~gÞ
1

j~r �~Ac �~hj
n~h;id

3r

�
Z

/lð~r �~AlÞ
o/mð~r �~Am �~gÞ

oAm;j

� 1

j~r �~Ac �~hj
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3.7 Spheropole

The spheropole is a correction required because the
charge distribution is approximated by a model charge
distribution in the long range [22].

Q ¼
X

c
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X

c

2p
3V

Z
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c ð~rÞ�j~rj2d3r
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X
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dm
l ð~Ac;~rÞ is a Gaussian representation of a unit point
multipole [22].

There are thus dependencies on ~Al, ~Am þ~g and the
volume V . We need to compute
X
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X
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3.8 Bielectronic integrals

These are integrals of the type

Bl~0m~gs~nr~nþ~h

¼
Z

/lð~r�~AlÞ/mð~r�~Am�~gÞ/sð~r 0 �~As�~nÞ/rð~r 0 �~Ar�~n�~hÞ
j~r�~r 0j

�d3rd3r0: ð49Þ

The derivative with respect to the cell parameters aij is
straightforward, as the only dependence on the cell
parameter is via the position of the centers and thus the
nuclear gradients only need to be multiplied with a factor:

oBl~0m~gs~nr~nþ~h
oaij

¼
oBl~0m~gs~nr~nþ~h

oAl;j
fl;i þ

oBl~0m~gs~nr~nþ~h
oAm;j

ðfm;i þ n~g;iÞ

þ
oBl~0m~gs~nr~nþ~h

oAs;j
ðfs;i þ n~n;iÞ þ

oBl~0m~gs~nr~nþ~h
oAr;j

� ðfr;i þ n~n;i þ n~h;iÞ : ð50Þ

As in Ref. [19], we define a Coulomb integral as

Cl~0m~gs~0r~h ¼
Xpen

~n

Bl~0m~gs~nr~nþ~h ð51Þ

and an exchange integral as

Xl~0m~gs~0r~h ¼
X
~n

Bl~0s~nm~gr~nþ~h : ð52Þ

Using this notation, one summation over the lattice
vectors is already included.

3.9 Energy-weighted density matrix

The contributions of the energy-weighted density matrix
to the derivative with respect to aij
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� � � ð53Þ

require a different prefactor, compared with the case of
the gradients with respect to nuclear positions:
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oaij

Z
BZ

� � � ¼
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oAl;j
fl;i � fm;i � n~g;i

 � Z

BZ

� � � ð54Þ

4 Total energy and gradient

4.1 Total energy

The total energy, in the notation of Ref. [19] , is obtained
as follows:
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4.2 Gradient of the total energy

The gradient with respect to the cell parameter is a
combination of the nuclear gradients, with appropriate
factors, and new derivatives with respect to parameters
such as V , c and ~K and their derivatives with respect to
the cell parameters.
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5 Examples

In this section, we give some numerical examples of the
accuracy of the gradients. First, we consider MgO, at a
lattice constant close to the equilibrium lattice constant.
Numerical and analytical gradients are compared, for
various values of the ITOL parameters controlling the
accuracy of the calculation of the integrals in Table 1. As
was explained in Ref. [18], certain parameters (ITOL2,
ITOL4 and ITOL5) can introduce an asymmetry in the
evaluation of the integrals, which results in inaccuracies
in the gradients. Exactly the same holds for gradients
with respect to the cell parameter. The accuracy for the
default parameters is about 2�10�4 au, which should be
good enough for practical purposes, and by increasing
the values of these parameters, the error is reduced to
10�5 au.

Various MgO supercells from 1� 1� 1 (i.e., with one
magnesium and one oxygen atom in the primitive cell)
up to 5� 5� 5 have been considered (i.e. with 125
magnesium and 125 oxygen atoms in the primitive cell)
in Table 2. The results demonstrate the high stability of
the gradient when larger cells are used.

Further examples in Table 3 illustrate the accuracy of
the gradients. For various systems, including magnetic
ones, the analytical and the numerical gradients agree
reasonably well. It is again demonstrated that increasing
the ITOL -parameters leads to more accurate gradients.
Also, the stability with respect to the supercell size is
illustrated, for Al2O3.

The total energy and the analytical gradient are dis-
played, around the equilibrium structure, in Table 4. We
note that in all cases, the gradient changes sign around
the equilibrium: for example, for MgO, the energy has its

Table 1. Face-centered cubic (fcc) MgO, at a lattice constant of
4.25 Å. The accuracy of the analytical gradient as a function of the
truncation parameters (ITOL parameters) is displayed. Basis sets of
the size [3s2p] were used for Mg and O

ITOL Analytical
derivative
(Eh/a0)

Numerical
derivative
(Eh/a0)

6 6 6 6 12 (default) )0.012737 )0.012555
8 8 8 8 14 )0.012589 )0.012533
10 10 10 10 16 )0.012522 )0.012471
10 10 10 16 16 )0.012496 )0.012482
10 12 10 16 16 )0.012505 )0.012503

Table 2. Fcc MgO, as in Table 1. The analytical gradient is com-
puted as a function of the supercell size to demonstrate the
numerical stability (from 2 to 250 atoms per cell). The default ITOL
parameters (6 6 6 6 12) are used

Supercell
size

Total energy/
MgO unit (Eh)

Analytical
derivative (Eh/a0)

1� 1� 1 )274.6635207 )0.01273658
2� 2� 2 )274.6635204 )0.01273664
3� 3� 3 )274.6635205 )0.01273668
4� 4� 4 )274.6635204 )0.01273665
5� 5� 5 )274.6635204 )0.01273665
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minimum between 4.18 and 4.20 Å, and also the analy-
tical gradient changes its sign. Similarly, in the other
systems considered, the minimum of the energy and the
zero of the analytical gradient agree to 0.01 Å, at least.

This is also demonstrated in Table 5, where the geo-
metry has been optimized according to the minimum in
energy, or the vanishing of the cell gradient (i.e., the
minimum of the energy was determined, up to an
accuracy of 0.001 Å, and similarly, the geometry with
the smallest value for the gradients was determined, up
to an accuracy of 0.001 Å). It turns out that the two

minima differ at most by 0.004 Å, which is probably
lower than the noise by the other parameters (basis set,
choice of FIXINDEX parameter [23] and so on). Note
that these calculations were done with the fractional
coordinates of the atoms held fixed, by simply varying
the cell parameters (an automatic optimizer which op-
timizes the cell dimensions and the nuclear positions si-
multaneously, using analytical gradients, is not yet
implemented in the CRYSTAL code).

Finally, the CPU times are displayed in Table 6. The
calculations were performed on a single CPU of a

Table 3. Other examples for a comparison of analytical and numerical gradients, including ferromagnetic (FM) and antiferromagnetic (AF)
states. If not stated otherwise, the default ITOL parameters are used. The basis sets are in the range from [2s1p] for H in urea up to [5s4p2d]
for the transition metals

System Space
group

Cell
parameters (Å)

Component Analytical
derivative
(Eh/a0)

Numerical
derivative
(Eh/a0)

Al2O3 167 4.7602, 12.9933 )oE
a1x

)0.19630
ð2� 2� 2 cell: ).19630)

)0.19625

Al2O3 167 4.7602, 12.9933 )oE
a1z

)0.06366
ð2� 2� 2 cell: ).06366)

)0.06361

Urea 113 5.565, 4.684 )oE
a1x

)0.01501 )0.01475

Urea 113 5.565, 4.684 )oE
a3z

)0.02495 )0.02516

NiO, FM 225 4.20 )oE
a1z

0.00595 0.00656

NiO, FM
(ITOL: 10 12 10 16 16)

225 4.20 )oE
a1z

0.00591 0.00592

NiO, AF 225 4.20 )oE
a3z

0.01111 0.01234

NiO, AF
(ITOL: 10 12 10 16 16)

225 4.20 )oE
a3z

0.01094 0.01109

KMnF3, FM 221 4.19 )oE
a1x

0.01043 0.01095

Table 4. Other examples for a
comparison of analytical and
numerical gradients. The
default ITOL parameters are
used

System Cell
parameter
(Å)

Energy
(Eh)

Components
(Eh/a0)

Gradient

MgO 4.18 )274.664192 @
@a3x

8:495� 10�4

4.19 )274.664222 8:103� 10�5

4.20 )274.664209 )6:735� 10�4

Urea 5.52, 4.64 )447.683214 @
@a1x

, @
@a3z

7:057� 10�4; 1:4379� 10�3

5.53, 4.63 )447.683158 )4:045� 10�4; 6:1033� 10�3

5.53, 4.64 )447.683218 )7:904� 10�4; 6:649� 10�4

5.53, 4.65 )447.683176 )1:1725� 10�3; )4:7011� 10�3

5.54, 4.64 )447.683166 )2:2707� 10�3; )1:010� 10�4

KMnF3 4.28 )2047.643166 @
@a1x

4:098� 10�4

4.29 )2047.643181 )5:754� 10�4

4.30 )2047.643141 )1:5369� 10�3

Table 5. Optimized structures, using energies or analytical gradients. The default ITOL parameters are used. For each compound, the upper
line refers to the structure with the lowest energy, and the lower line to the structure with (practically) vanishing force. The components of
the forces are as in Table 3

System Geometry (Å) Energy (Eh) Force (Eh/a0)

KMnF3 4.288 )2047.643182 )3:8� 10�4

4.284 )2047.643179 1:3� 10�5

Urea 5.525; 4.642 )447.683224 )1:2� 10�4; �2:9� 10�5

5.524; 4.642 )447.683224 2:8� 10�5; 4:8� 10�5

Al2O3 4.497; 12.111 )1401.048515 )4:4� 10�4; )1:3� 10�4

4.496; 12.111 )1401.048515 2:9� 10�4; )2:2� 10�5

401



Compaq ES45, with a clock rate of 1 GHz. It is probably
best to compare the CPU time for the integrals with the
time for the gradients, as the code is somewhat similar
for these two tasks. At present, the CPU time for all the
gradients (nuclear and cell gradients) is roughly 10 times
the CPU time for the integrals. This ratio is expected to
be the upper limit as the gradient code is not yet fully
optimized. However, the calculation of numerical gra-
dients scales with the number of parameters to be opti-
mized, because at least one more energy point is
necessary for one additional numerical derivative. Thus,
if there are enough geometrical parameters, the analy-
tical gradients should be clearly favorable.

For the MgO supercells, one can also analyze the
CPU times for the integrals and the self-consistent-field
procedure as a function of the system size. When
dividing by the number of iterations (which is 14, 14, 15,
15 and 18 for the cells from size 1� 1� 1 up to
5� 5� 5), the CPU time per iteration scales roughly
with the third power of the system size, which is to be
expected as the diagonalization scales with this power.
The integrals scale with a somewhat lower exponent (less
than 2), owing to the fact that more and more of the
bielectronic integrals of the larger cells are not evaluated
exactly, but with the help of a multipolar expansion.

6 Conclusion

A formalism for the calculation of the analytical
gradient of the Hartree–Fock energy, with respect to
the cell parameter, has been presented and implemented

in the code CRYSTAL, for the case of systems periodic
in three dimensions. The implementation includes the
cases of spin-restricted and unrestricted polarization. It
has been shown that high accuracy can be achieved.
Future developments, such as a full structural optimiza-
tion with the help of analytical gradients, now become
feasible.
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Table 6. CPU times for the various calculations. The calculations
were performed on a Compaq ES45, using a single CPU (1 GHz).
The CPU times refer to the part for the integrals (all the integrals
were written to disk), the self-consistent-field (SCF) procedure, and
to the calculation of all the gradients (i.e., nuclear gradients and cell
gradients)

System Number of
symmetry

CPU time (s)

operators Integrals SCF Gradients

MgO ð1� 1� 1Þ 48 2 0.5 26
MgO ð2� 2� 2Þ 48 11 18 152
MgO ð3� 3� 3Þ 48 55 500 533
MgO ð4� 4� 4Þ 48 209 6330 1662
MgO ð5� 5� 5Þ 48 670 57851 4443
Al2O3 ð1� 1� 1Þ 12 15 10 184
Al2O3 ð2� 2� 2Þ 6 544 4681 3877
Urea 8 29 103 257
NiO, FM 48 12 6 128
NiO, AF 12 32 220 346
KMnF3 48 27 20 281
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